Bài tập tổng hợp về hằng đẳng thức

     

Những hằng đẳng thức đáng nhớ chắc chắn thân thuộc gì cùng với các bạn . Hôm ni Kiến sẽ nói kỹ rộng về 7 hằng đẳng thức đặc biệt : bình phương thơm của một tổng, bình phương của một hiệu, hiệu của hai bình phương thơm, lập phương của một tổng, lập phương của một hiệu, tổng hai lập pmùi hương và cuối cùng là hiệu nhì lập pmùi hương. Các các bạn cùng tham khảo nhé.

Bạn đang xem: Bài tập tổng hợp về hằng đẳng thức

A. 7 hằng đẳng thức xứng đáng nhớ

1. Bình pmùi hương của một tổng

Với A, B là các biểu thức tùy ý, ta có: ( A + B )2= A2+ 2AB + B2.

Ví dụ:

a) Tính ( a + 3 )2.b) Viết biểu thức x2+ 4x + 4 bên dưới dạng bình phương thơm của một tổng.

Hướng dẫn:

a) Ta có: ( a + 3 )2= a2+ 2.a.3 + 32= a2+ 6a + 9.b) Ta tất cả x2+ 4x + 4 = x2+ 2.x.2 + 22= ( x + 2 )2.

2. Bình phương thơm của một hiệu

Với A, B là các biểu thức tùy ý, ta có: ( A - B )2= A2- 2AB + B2.

*

3. Hiệu nhị bình phương

Với A, B là những biểu thức tùy ý, ta có: A2- B2= ( A - B )( A + B ).

*

4. Lập phương thơm của một tổng

Với A, B là các biểu thức tùy ý, ta có: ( A + B )3= A3+ 3A2B + 3AB2+ B3.

*

5. Lập phương thơm của một hiệu.

Với A, B là các biểu thức tùy ý, ta có: ( A - B )3= A3- 3A2B + 3AB2- B3.

lấy một ví dụ :

a) Tính ( 2x - 1 )3.b) Viết biểu thức x3- 3x2y + 3xy2- y3bên dưới dạng lập phương của một hiệu.

Hướng dẫn:

a) Ta có: ( 2x - 1 )3

= ( 2x )3- 3.( 2x )2.1 + 3( 2x ).12- 13

= 8x3- 12x2+ 6x - 1

b) Ta tất cả : x3- 3x2y + 3xy2- y3

= ( x )3- 3.x2.y + 3.x. y2- y3

= ( x - y )3

6. Tổng hai lập phương

Với A, B là các biểu thức tùy ý, ta có: A3+ B3= ( A + B )( A2- AB + B2).

Crúc ý: Ta quy ước A2- AB + B2là bình phương thiếu của hiệu A - B.

Xem thêm: Thám Tử Lừng Danh Conan Tập 33, Thám Tử Lừng Danh Conan

Ví dụ:

a) Tính 33+ 43.b) Viết biểu thức ( x + 1 )( x2- x + 1 ) bên dưới dạng tổng hai lập pmùi hương.

Hướng dẫn:

a) Ta có: 33+ 43= ( 3 + 4 )( 32- 3.4 + 42) = 7.13 = 91.b) Ta có: ( x + 1 )( x2- x + 1 ) = x3+ 13= x3+ 1.

7. Hiệu nhị lập phương

Với A, B là các biểu thức tùy ý, ta có: A3- B3= ( A - B )( A2+ AB + B2).

Chụ ý: Ta quy ước A2+ AB + B2là bình phương thiếu hụt của tổng A + B.

Ví dụ:

a) Tính 63- 43.b) Viết biểu thức ( x - 2y )( x2+ 2xy + 4y2) bên dưới dạng hiệu nhị lập phương

Hướng dẫn:

a) Ta có: 63- 43= ( 6 - 4 )( 62+ 6.4 + 42) = 2.76 = 152.b) Ta tất cả : ( x - 2y )( x2+ 2xy + 4y2) = ( x )3- ( 2y )3= x3- 8y3.

B. các bài luyện tập từ bỏ luyện về hằng đẳng thức

Bài 1.Tìm x biết

a) ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.b) ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2= - 10.

Hướng dẫn:

a) Áp dụng những hằng đẳng thức ( a - b )( a2+ ab + b2) = a3- b3.

( a - b )( a + b ) = a2- b2.

lúc đó ta gồm ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.

⇔ x3- 33+ x( 22- x2) = 0 ⇔ x3- 27 + x( 4 - x2) = 0

⇔ x3- x3+ 4x - 27 = 0

⇔ 4x - 27 = 0

Vậy x=

*
.

Xem thêm: Xem Phim Naruto Dattebayo Tập 53 Vietsub, Xem Phim Cậu Bé Naruto (Phần 1) Tập 53 Vietsub

b) Áp dụng hằng đẳng thức ( a - b )3= a3- 3a2b + 3ab2- b3

( a + b )3= a3+ 3a2b + 3ab2+ b3

( a - b )2= a2- 2ab + b2

Lúc đó ta có: ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2= - 10.

⇔ ( x3+ 3x2+ 3x + 1 ) - ( x3- 3x2+ 3x - 1 ) - 6( x2- 2x + 1 ) = - 10

⇔ 6x2+ 2 - 6x2+ 12x - 6 = - 10

⇔ 12x = - 6

Vậy x=

*

Bài 2:Rút ít gọn biểu thức A = (x + 2y ).(x - 2y) - (x – 2y)2

2x2+ 4xy B. – 8y2+ 4xy- 8y2 D. – 6y2+ 2xy

Hướng dẫn

Ta có: A = (x + 2y ). (x - 2y) - (x – 2y)2

A = x2– (2y)2–

A = x2– 4y2– x2+ 4xy - 4y22

A = -8y2+ 4xy

Hãy nhớ nó nhé

*

Những hằng đẳng thức xứng đáng nhớ trên hết sức quan trọng tủ kiến thức của bọn họ . Thế bắt buộc các bạn hãy phân tích với ghi ghi nhớ nó nhé. Những đẳng thức kia góp chúng ta cách xử trí những bài toán dễ với khó một phương pháp tiện lợi, các bạn đề xuất làm cho đi làm lại để phiên bản thân rất có thể vận dụng tốt hơn. Chúc các bạn thành công cùng cần cù trên tuyến đường tiếp thu kiến thức. Hẹn chúng ta làm việc đầy đủ bài bác tiếp theo


Chuyên mục: